Introduction to Dynamical Systems

Solutions Problem Set 9

Exercise 1. Prove Lemma 3.2 in Lecture9.pdf

Solution. To show this we can simply use the Jordan form of the matrix. Recall the statement of the lemma:

Lemma _

If the matrix A is hyperbolic in the ODE system sense, so that e^A is hyperbolic in the sense of Lecture 8.pdf, then there is a splitting

$$\mathbb{R}^n = E_+ \oplus E_-$$

as well as constants c > 0 and $\theta_{\pm} \in (0,1)$ such that we have $e^{tA}|_{E_{\pm}} : E_{\pm} \longrightarrow E_{\pm}$, and further, we have

$$\begin{aligned} \left| e^{tA} y_0 \right| &\leq c \cdot \theta_+^t \cdot \left| y_0 \right|, \quad \forall y_0 \in E_+, \quad t \geq 0 \\ \left| e^{-tA} y_0 \right| &\leq c \cdot \theta_-^t \cdot \left| y_0 \right|, \quad \forall y_0 \in E_-, \quad t \geq 0 \end{aligned}$$

We begin by noting that we have $e^{tA} = P^{-1}e^{tJ}P$, where J is the Jordan normal form of A. We may express each block J_{λ} in J as $J_{\lambda} = \lambda I + N$, where either

$$N = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

or N=0 is a nilpotent matrix (i.e. $N^q=0$ for some $q\geq 0$), which then results in

$$e^{tJ_{\lambda}}=e^{t\lambda I}e^{tN}=e^{t\lambda}I+e^{t\lambda}\sum_{j=1}^{q}\frac{N^{j}}{j!}t^{j}=e^{t\lambda}I+e^{t\lambda}\tilde{N}.$$

Upon noticing that N^j shifts the diagonal above the main diagonal one position above, we conclude that the sum results in a matrix \tilde{N} with polynomial entries with degree at most q-1. The factor $e^{t\lambda}$, however, imposes the decay of the entries as $t \to \infty$. Letting $n \in \mathbb{N}$ and Λ be the largest eigenvalue of A, we set $\sigma_+ = e^{\Lambda} + 1/m$, with m large enough such that $\sigma_+ \in (e^{\Lambda}, 1)$. Then, for $t \geq T_m$ large, and letting L be the set of eigenvalues of A (with multiplicity), we have

$$\begin{aligned} \left| e^{tA} x \right| &= \left| \sum_{\lambda \in L} e^{t\lambda} I x + e^{t\lambda} \tilde{N}_{\lambda} \right| x \leq \sum_{\lambda \in L} \left| e^{t\lambda} I x \right| + \left| e^{t\lambda} \tilde{N}_{\lambda} x \right| \\ &\leq e^{t\Lambda} \left| x \right| + \sum_{\lambda \in L} \left\| e^{t\lambda} \tilde{N}_{\lambda} \right\| \left| x \right| \leq e^{t\Lambda} \left| x \right| + \frac{1}{m} \left| x \right| = \theta_{+} \left| x \right|, \end{aligned}$$

since $\|e^{t\lambda}\tilde{N}\| \to 0$ as $t \to \infty$. Then, set $c_+ = \max_{[0,T_m]} \|e^{tA}\| / \theta_+^t$ (which is finite since that function is continuous on the compact interval $[0,T_m]$) to conclude.

Exercise 2. Give a careful proof of Lemma 3.3 in Lecture 9.pdf.

Solution. Follow the sketch in page 4 and carefully compute the C^1 -norm

$$||g||_{C^1} = \sup_{x} |g(x)| + \sup_{x} |g'(x)|$$

of the difference $Ty_1 - Ty_2$, given by

$$Ty(t) = \int_0^t e^{(t-s)Df(0)} F(y(s)) ds$$

to show it is a contraction.

Exercise 3. Using the result from **Exercise 2** in Problem Set 8, prove that if $0 \in \mathbb{R}^n$ is a hyperbolic fixed point of the system of ODEs

$$\dot{y}_j = f_j(y_1, \dots, y_n), \quad j = 1, 2, \dots, n,$$
 (1)

and more specifically if Df(0) only has eigenvalues with negative real part then there is a neighborhood $U \ni 0$ in \mathbb{R}^n such that the solution to the system (1) with initial condition $y(0) = \in U$ satisfies a bound of the form

$$|y(t)| \le Ce^{-ct}, \quad t \ge 0$$

for some suitable constants C, c > 0.

Solution. We may apply **Exercise 2** in Problem Set 8 to both h and h^{-1} (simply by switching the roles of $\hat{\psi}$ and $\hat{\phi}$) in the statement of the Hartman-Grobman theorem in order to find that both functions are Hölder continuous (at least locally uniformly) and that $y(t) = h^{-1} \left(e^{Df(0)t} h(y(0)) \right)$, and estimate -using **Exercise 1**- as follows

$$|y(t)| \leq [h^{-1}]_{\alpha} \left| e^{Df(0)t} h(y(0)) \right|^{\alpha} \leq [h^{-1}]_{\alpha} \left(K[h]_{\alpha} e^{-kt} \left| y(0) \right|^{\alpha} \right)^{\alpha} \leq C e^{-ct}.$$